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1. INTRODUCTION

Let Co[0, (0) denote the class of all continuous real valued functions
defined on [0, (0) that vanish at 00. Let 11/11= SUP"'E(O.OO) If(x) I and let 1T n

denote the class ofall algebraic polynomials ofdegree ~ n. Fix B(x) E qo, (0),
where B has at most a countable number of nonnegative zeroes {tv}, this set
having no finite cluster point. Also, assume that there exists a positive
integer N (assume that N is minimal) for which lim",-+oo (B(X)/XN) = 0. Set

Do[0, (0) = {IE Co[O, (0):1 = B . g, with g E qo, (0)

and g(x) > 0, for all x ~ O} (I)

and

B(n, k) = lexB(x)/p"(x): p E 1T n , n ~ 1, k a positive integer,
n

11 • k "?: N, p(x) = La/xi> °for x E [0, (0)
i~O

with f a;2 = I and ex reall.
,~O

(2)

We write (ex, p) E B(n, k) whenever we are speaking about such a function
in B(n, k).

Functions in Do[O, (0) are called oscillating decay-type functions and
occur often in various branches of physics and chemistry. B(x) is the
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"oscillation" factor and, in practice, it is often taken to be a polynomial.
However, in the theory presented here, more general functions such as
B(x) = sin x are also permissible.

In this paper, we study questions of best approximation of functions in
Do[O, 00) by B(n, k). Thus, as usual, we call (u:, p) E B(n, k) a best approxima
tion tofE Do[O, 00) provided that Ilf - OiBjpk II = inf{llf - {JB/qk II : ({J, q) E

B(n, k)j. The motivation for this study comes from two sources. First, in [5J,
Mainardus, Reddy, Taylor, and Varga developed a Bernstein-type theory
for this type of problem for the special case B(x) "= 1 and f E ColO, 00) is
the reciprocal of an entire function. However, no results concerning existence,
characterization, and uniqueness were given in this study. In [8J, Williams
studied this problem for the special case of a finite interval; existence,
characterization, and uniqueness results were given, as well as a modified
multiple Remes exchange for calculating best approximations. However,
the existence claim was incorrect and a deeper study of this particular
question was given by Taylor and Williams [7J.

The main result of our study is that the standard "alternation" theorem
is only sufficient. Indeed, we show that there are two types of alternation
that can occur, one of which is the standard alternation. Aside from this,
we show that existence is answered here as in [7] and that uniqueness holds
whenever best approximations exist.

Finally, we would like to contrast this study with some results of Achieser
[1]. In Chapter II of this book, the problem of finding best rational ap
proximations in Rnn(- 00, 00) to functions f E C(- 00, 00) satisfying
limx->_oo!(x) = limx->oo!(x) (limit being finite) is studied. In this setting, the
points at ± 00 are identified and a theory of best approximation including
existence, alternation (standard form, with possibility that 00 may be an
extreme point), and uniqueness are proved. Thus, in the theory given there,
the results for a finite interval are essentially identical to the results for
(- 00, 00).

2. MAIN RESULTS

We begin this section by proving an existence theorem similar to one given
in [7].

THEOREM 1. Assume that the zeroes {tv} C [0, 00) of B(x) satisfy:

(i) °~ tv < tV+l ,for all v .?: 1;

(ii) limx->o+ IB(x)jxk I = +00, if t1 = 0;

(iii) limx->fv I B(x)j(x - t.)2k I = +00, if tv > 0.

Then, for all f E Do[O, 00), there exist best approximations in B(n, k).
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Proof Set E = dist(f, B(n, k» and assume that I rf= B(n, k). Since
lim,.~x B(x)/xnk = 0, we can select ex > 0 so that II ex . B(x)/rk(x) II .:s;: (1/2) 11/11,
where rex) = (1/21 / 2) (xn + 1). This inequality and the fact that
sgn(exB(x)/rk(x» = sgnf(x) imply that III - exB(x)/rk(x)11 < IlfII,. Now,
select p, 0 < P < 1 such that III - ex . B(x)/rk(x)11 = p II!!I. Thus, E .:S;: p 1IIII
and we see that 0 is not a best approximation tof Let {(ex m , Pm»):~l C B(n, k)
satisfy

and

m = 1,2,... (3)

(4)

m = 1,2, ...•

Since Pm(x) > 0 for x ~ 0 by assumption, inequality (3) implies that exm > O.
Let X o E [0, (0) be such that If(xo)I = Illil, then, (3) implies that

I I
,;:: (1 + p) 1IIII (L~~o X~')k/2

ex", "'" I B(xo)I '

where we have applied Cauchy's inequality to IPm(xo)[. Thus, we may select
a subsequence {(exv , PV)}:l of {(exm,Pm)}:~l for which exv --* ex ~ 0, Pv--*
P E 7Tn , p(x) = L;~o aixi, with L:~~o a,2 = 1 and the convergence of Pv to P
is uniform on each compact subset of [0, (0). Now, at Xo , where Xo is chosen
so that If(xo)I > p ilill and p(xo) =F 0, we have that I/(xo) - exB(xO)/pk(xO)I =
limv~", I f(xo) - exvB(xO)jPvk(xO)! .:S;: E < p 11/11. implying that ex > O. Fix
x E [0, (0), then,

I
f(x) - OI.B(x) I ,;:: II - exvB(x) I+ I OI.vB(x) _ exB(x) I·

pk(X) "'" p/(x) p/(x) pk(X)

Letting v --* 00 and then taking the sup over all x E [0, (0), gives

IJ - exB/pk 11 .:S;: E. (5)

Finally, we must show thatp(x) > 0 for all x ~ 0 so that (01., p) E B(n, k).
Now, (3) implies that p(x) > 0, whenever B(x) =F O. Thus, we must only
show that p(tv) > 0 for all v ~ 1. Now, suppose that t1 = 0 and p(O) = O.
Then, by (ii) we would have that limx_>o+ I exB(X)/pk(X) I = + 00 violating (5).
Thus, p(O) > O. Finally, suppose that p(tv) = 0 for some zero tv > 0 of
B(x). Since p(x) > 0 for all x rf= {tv} and {tJ has no finite cluster point, we
must have that tv is an even-order zero of multiplicity ~ 2. But this would
then violate (5) because of assumption (iii). Hence, p(x) > 0 for x ~ 0 and
thus, (ex, p) E B(n, k) with

III - OI.B/pk II = E.
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Observe that for the best approximation (0:, p) E B(n, k), it may be possible
that IiIDx-<>oo sup I 0: . B(x)/pk(x) I = E. Also, if B(x) '-= 1, then Theorem 1
guarantees the existence of best approximations to positive functions in
Co[0, (0) by elements of the form 1(p, P E 7fn ,p > °on [0, (0).

Next, we wish to turn to the problem of characterizing best approximations.
As usual, for a given f E Do[O, (0) and (0:, p) E B(n, k) we say that x E [0. (0)
is an extreme point for f (with respect to (0:. p)) provided that I f(x) 
o:B(x)/p"(x)I = Ilf - (o:B/pk)ll. Before proving our alternation theorem,
we wish to give a simple example that shows that the standard alternation
theorem is not a necessary condition for best approximations in this setting.
Set B(x) c~ 1, k = 1, n = 2, and p(x) = x + 1. Dfine fE Co[O, (0) by
f(O) = 5;4'/(1) = 1/4,/(2) = 7/12,fis linear on [0, 2] andf(x) = 7/12 e~(x-2l

for x :;:? 2. Note that the points x = 0, I, 2 are extreme points for f and
Ilf - l/(x + 1)11 = 1/4. If there exists q(x) = ax2 + bx + c E B(2, 1) such
that Ilf - l/q II ~ Ilf - l/(x + 1)11, then we must have 2/3 <. c ~ 1, (x = 0);
a + b + c =? 2, (x = 1); and 6(5 ~ 4a + 2b + c <. 3 (x = 2) and a > 0.
The only solution to this system of inequalities is q(x) = x + 1. Hence,
x + 1 is the unique best approximation to f from B(2, 1) =00 Ru2[0, (0).
Yet, the standard theory for R2°[0, N] N > 0, requires the best approxi
mation to alternate on a set of at least four extreme points. Thus, the standard
alternation theorem is not a necessary condition in this case.

We now turn to proving our characterization theorem. For convenience,
we change our normalization of elements of B(n, p) by writing o:/p as l(q,
where q = p/o: whenever 0: oft 0. Recall that one consequence of our existence
theorem was that°is not a best approximation to any function in Do[O, (0)"'-'
B(n, k). Thus, in what follows, we consider only nonzero elements of B(n, k).
Also, we would like to point out that one could apply the asymptotic con
vexity theory of Meinardus and Schwedt [6] to this problem to arrive at the
same result. However, we prefer to derive this result from first principles.

THEOREM 2. Let fE Do[O, (0) "'-' B(n, k),f = B . g and p E B(n, k), p > °
on [0, (0). Then, p is a best approximation to f if and only if one the following
two conditions hold:

(a) There exist points °~ Xl < x 2 < ... < Xn+2 at which If(x,)
B(x,)/pk(x,) [ = Ilf - B/pk II, i = 1,... , n + 2 and sgn(g(xi) - l/pk(x,)
-sgn(g(x'+1) - l/pk(xi+l))' i = 1,... , n + 1.

(b) The degree ofp ~ n - 1 and there exist points °~ Xl < ... < Xn+1

at which If(Xi) - B(xi)/pk(xi)j = Ilf - B(pk II, i = 1,... , n + 1 and sgn( g(x,)
l/pk(xi)) = (_1)n+1-i.

Proof Set e(x) = f(x) - B(x)(pk(x) and E = II e(x)ll. Suppose that
p E B(n, k) is a best approximation to f and that (a) does not hold. In this
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event, we wish to prove that (b) must hold. We do this by deriving a series
of contradictions. However, first note that the error curve e(x) = f(x) 
B(X)/pk(X) cannot be a constant since p(x) + E is in B(n, k) for sufficiently
small E > 0. Now, let us suppose that there exists m :(; n points, Xl ....' x m ,

on which I e(xi)1 = E, i = 1,... , m and

sgn(g(x,) - l/pk(x,)) = -sgn(g(Xi+l) - l/pk(Xi+l))' i = 1'00" m - I

hold with m maximal. Following the format of the corresponding argument
in the classical problem of approximating with polynomials on a finite
interval [4, p. 26-27], we select points {zi}7'~ll such that X, < Z, < X'+l '

i = 1'00" m - 1, e(z,) = 0, i = 1'00" m - 1 and there are no alternations
as defined in (b) in each of the intervals [z, , Zi+l], i = 0'00" m - 1, where
Zo = °and Zm ~ Xm + 1 such that I f(x)[ :(; E/2 for all X ~ Zm .

m-l
Set ep(x) = rri~l (x - Z,) and note that 8ep :(; n - 1. Now, modify p

according to the following two cases. (i) Suppose that sgn(e(xm)/B(xm)) = -1.
In this case, set q(x) = p(x) + E(X + l)n-m+l ep(x), where E > °is chosen
so that

max If(x) - B(X)/qk(X)I < E.
XE[O,Zm]

That such a choice for E exists is easily seen using essentially the compactness
and continuity arguments for the corresponding argument in the classical
polynomial approximation problem on a finite interval [4, p. 26-27]. Now,
for x ~ Zm and observe that l/q(x) < l/p(x) and 1imx->o: I B(X)jqk(X) I = 0.
Thus, there exists M ~ Zm such that x ~ M implies

If(x) - B(X)/qk(X) I < E/2.

Also, on the interval [zm, M] we have that whenever B(x) =1= 0, I f(x) 
B(X)jqk(X) I < E. Thus, by continuity,

max i f(x) - B(X)jqk(X) I < E.
xE[zm,M]

Combining these results gives that

Ilf - B/qk II < E,

which is a contradiction.
Now, consider (ii) sgn e(xm)jB(xm) = +1. In this case, set q(x) =

p(x) + E(X + l)n-m ep(x) (x - zm), where (x + l)n-m is to be replaced by 1
if n = m and E > °is chosen so that

max : f(x) - B(X)/qk(X)! < E.
XE[O,Zm]
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That it is possible to choose an € > 0 satisfying this requirement follows
readily from the fact that on (Zi, Zi+l) i = 0, ..., m - 1, sgn(x + l)n-m
<p(x) (x - zm» = -sgn e(xi)/B(Xi)' Now, for x ~ Zm, we have by our
assumption that m is maximal, I e(x) I < E, although it could happen that
ITiii",...", I e(x) I = E. However, as in case (i), we have that lim."...", B(X)/qk(X)=O
and for x ~ Zm, l/q(x) ~ l/p(x). Thus, once again

III - B/qk II < E,

contradicting our hypothesis that p is a best approximation to Ifrom B(n, k).
Thus, we must have at least n + 1 extremaIs, 0 ~ Xl < ... < Xn+l for which
I e(x,)I = E i = 1'00" n + 1 and sgn(g(xi) - l/pk(xi» = -sgn(g(Xi+I)
I/pk(Xi+I», i = 1'00" n. Since we are assuming that (a) does not hold, we
must have that there are exactly n + 1 such points.

Now, let us show that op ~ n - 1 also must be satisfied. Indeed, if
op = n, then, since p > 0 for all x E [0, (0) we must have that the leading
coefficient of p is positive. Now, let m ~ Xn+l be such that x ~ M implies
Ie(x)j ~ E/2. Such an M exists since lim",...", I e(x) I = 0 as op = n. Select
{zi}~:l such that Zo = 0, Zn+l = M, x, < Zi < X'+l' i = 1'00" n, e(zi) = 0,
i = 1"00' n and there are no alternations as defined in (b) in [Zi, Zi+l],
i = 0"00' n. Set <p(x) = TI;~1 (x - z,) and let €o > 0 be chosen so that
p(x) - €o I <p(x) I > 0 for x ~ O. Such an €o can be shown to exist since
op = n. Now, set q(x) = p(x) + €<p(x), where I € I ~ €o, is chosen so that
q(x) is a better approximation than p(x) to f Indeed, sgn € = -sgn e(xn+l)/
B(xn +l ) and I € I sufficiently small will guarantee that

max If(x) - B(X)/qk(X) I < E,
XE[O,Zm+l]

by the standard argument cited above. Next, select N such that N ~ Zn+l
and x ~ N implies IB(x)/(p(x) - I € I <p(X»k I ~ E/3 and Ij(x) I ~ E/3.
Then, by possibly making I € I smaller, we can guarantee that

max [j(x) - B(x)/ql.'(x) I < E
XE[Zn-l-I,N]

and for x ~ N,

If(x) - B(X)/qk(X) I ~ 2E/3.

Thus, III - B/qk II < E and we have our desired contradiction, so that
op ~ n - I must hold.

Finally, we wish to show that sgn(g(xn+l) - I/pk(xn+l» = 1. If not,
then the argument of case (i) above can be repeated to get our desired
contradiction. Thus, we have proved the necessity part of the theorem.

Now, let us turn to proving that both (a) and (b) are sufficient conditions
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for p to be the best approximation toffrom B(n, k). Thus, assume that con
dition (a) is satisfied by p. In this case,p is not only the unique best approxima
tion to f from B(n, k); but in fact, p is the unique best approximation to j
from B(n, k) on the closed interval [0, xn+2] by the results of Williams [8].

Thus, suppose that condition (b) holds and that there exists q E B(n, k)
for which

Ilf - Bjqk II ~ [If - Bjpk II.

(We shall actually prove thatp is unique whenever (b) holds in our argument.)
Thus, at the extreme points Xl"'" X n+1 , we have that

i = l, ... , n + 1.

Using the standard zero counting argument (for uniqueness) [1, p. 56-57],
we have that either oq = n or q = p as op ~ n - 1. Thus, suppose that
oq = n. Since IIf - BJqk II ~ E, we must have that q(x) > °for all X ~ 0,
so that the leading coefficient of q is positive. Hence, there exists X n+2 > X n +1

at which q(Xn+2) - p(xn+2) > 0. Adjoining X n+2 to the set Xl'"'' X n+1' we
have that

i = l, ... , n + 2.

Once again, appealing to [1, p. 56-57], gives p == q. •

COROLLARY 1. Best approximations from B(n, k) to functions of Do[0, (0)
are unique.

Thus, we see that best approximations are characterized by two possible
types of alternation. It should be noted that condition (a) of Theorem 2
corresponds to the case when the approximation problem is equivalent
to approximating the given function on some interval of the form [0, N],
N sufficiently large. Also, Theorem 2 implies that for a given f E Do[O, (0),
one cannot expect the Remes algorithm to necessarily converge to a best
approximation. This is so, since the Remes algorithm, without some sort of
modification, will always find the best approximation on some interval of
the form [0, N], N > O. However, if one is fortunate in his choice of f(x),
such as I(x) = e-X as used in [3], then the Remes algorithm will give the
desired answer for N sufficiently large.

In [2], theorems corresponding to a zero in the convex hull characterization,
strong uniqueness and continuity of the best approximation operator are
studied for the special case B(x) = 1. For example, if a best approximation
p* E B(n, k) satisfies op* < n - 1, then the best approximation operator
need not be continuous at p*, for op* = n, the operation is continuous at
p* and for op* = n - l, this question is open.
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